Synthesis, Structure and Preliminary Complexation Behaviour of Macrocyclic Thioureas and Ureas

Mark Rosser,^a David Parker,*^a George Ferguson,^b John F. Gallagher,^b Judith A. K. Howard^a and Dmitri S. Yufit^a

* Department of Chemistry, University of Durham, South Road, Durham, *UK* DHI 3LE *^b*Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N7G 2W1

Tricyclic ligands incorporating bis(thiourea) subunits may be prepared from the corresponding monocyclic **[18]-** and

[24]-ring N₄O₂ and N₄O₄ polyaza-compounds and adopt a *trans*-conformation in the free ligand; an unusual trisilver(i) complex is formed with the N_4O_2 -derived ligand with bridging nitrate groups in which the thiourea groups are cis-oriented.

Although the urea carbonyl group is an excellent o-donor for charge-dense cations, and the related thioureas form stable linear $2:1$ complexes with soft ions such as $\text{gold}(1)$,¹ and $silver(1)$, there have been relatively few reports of their complexation behaviour when incorporated in a macrocyclic ligand. Most effort has been directed towards the synthesis of 'crown-ureides'2 incorporating benzimidazolone moieties4 or of hemi-spherands including imidazolidinone sub-units *.2,3* There appear to be no reports of the complexation behaviour of cyclic poly(thioureas). We report a general synthesis of cyclic bis(thioureas), *e.g.* 1 and **4,** linked in this case by polyoxyethylene chains, their conversion to the corresponding bis(ureas), 3 and 6, the structural characterisation of two of the bis(thioureas) and the structural identification of an oligonuclear silver (i) complex.

The synthetic strategy adopted was to convert 1,4-diaza units (ethylenediamine groups) in a polyaza macrocycle into the desired thiourea units by reaction with carbon disulfide,⁵ subsequently transforming the thiourea group to a urea by

reaction with mercury(II) acetate.⁶ Thus reaction of 1,10**dioxa-4,7,13,16-tetraazacyclooctadecane 7** with carbon disulfide, followed by treatment with HC1 (reflux, 14 h) afforded 1 as a colourless solid [m.p. 246-247 °C, $\delta_C(CDC1_3)$ 182.2 $(C=S)$] whose ¹H NMR spectrum $(CDCI₃, 293 K)$ was consistent? with the ring being in a single low-energy conformation. The X-ray structure revealed that the ligand

t **New compounds gave satisfactory microanalytical, mass spectral and NMR (COSY and HETCOR) data in accord with the proposed structures: selected data, 1:** δ_H(CDCl₃) 4.64 (4H, ddd, NCH₂CH₂O), **3.94 (4H, m, NCH2CH2N), 3.80 (4H, ddd, NCH2CH20), 3.64 (4H,** $(4H, m, NCH₂'CH₂'N); \delta_C(CDCl₃): 182.2 (C=S), 67.8 (CH₂O), 47.4$ **AA'BB', NCH₂'CH₂'O), 3.36 (4H, AA'BB', NCH₂'CH₂'O), 2.96 (NCH2CH20), 47.0 (CH2N). 4: GH(CDC13) 3.83 (8H, t,** *J* **10 Hz,** NCH₂CH₂O), 3.70 (8H, t, *J* 10 Hz, NCH₂CH₂O), 3.69 (8H, s, **NCH₂CH₂N), 3.61 (8H, s, OCH₂CH₂O); δ_C(CDCl₃) 182.6 (C=S),** 70.6 (OCH₂CH₂O), 70.4 (NCH₂CH₂O), 48.3 (OCH₂CH₂N), 48.0 **(NCH2CH2N).**

possessed a centre of inversion in the crystal, with the two thiourea groups trans-disposed (Fig. 1). The homologous macrocycle **4** (m.p. 233-235 "C) was prepared in an analogous manner from 1,4,13,16-tetraoxa-7,10,19,22-tetraazacyclotetraicosane **8b,** which was in turn prepared from the cyclic tosylamide **8a** derived from the acyclic ditosylate or dichloride **9** using standard Richman-Atkins cyclisation conditions $[Cs_2CO_3,$ dimethylformamide (DMF), (66% or 52%) cyclisation yield]. The structure of **4** (Fig. 2) revealed that the two thiourea rings were again oriented trans to one another in this case with the sulfurs directed outside the ring.# Molecular modelling studies suggest that there **is** a relatively low energy barrier to reorientation of these thiourea groups *so* that they may be directed inwards as needed to bind, *e.g.* a gold(1) cation in a trans-chelating manner.

Reaction of **1** with silver nitrate (in excess) in methanol led to formation of a crystalline complex with the stoichiometry 1 : 3 (ligand : silver). Crystallographic analysis of this complex revealed that the coordination geometry about each of the three silver cations was quite different (Figs. 3 and 4). The ligand is arranged in a cis-configuration such that the two sulfur atoms bridge each of the silver cations [all four Ag-S bond lengths are in the range $2.53(1)$ to $2.69(1)$ Å; $Ag(1)\cdots Ag(2)$ is 2.90(1) Å]. The ring oxygens O(1) and O(2)

Crystal data: **1**, $(C_{14}H_{24}N_4O_2S_2)$: $M = 344.5$, triclinic, $P\bar{1}$, $a =$ 6.9554(4), $b = 7.8297(11)$, $c = 8.1242(13)$ Å; $\alpha = 79.27(1)$, $\beta =$ $75.50(1)$, $\gamma = 84.37(1)$ °; $U = 420.2$ Å³, $Z = 1$, $F(000) = 184$, Mo-K α , μ $= 1.9$ cm⁻¹, $D_c = 1.36$ g cm⁻³; 1826 reflections measured, 1268 with $I \ge 3\sigma(I)$ used; $R = 0.031$, $R_w = 0.044$.

 $[A \text{·} \text{Ag}_3(\text{NO}_3)_3]$: $M = 854.1$, monoclinic, $P2_1/n$, $a = 10.703(4)$, $b =$ $15.577(\tilde{4})$, $c = 16.294(3)$ Å, $\beta = 91.62(2)$ °; $U = 2715$ Å³, $Z = 4$, $F(000)$ $= 1672$, Mo-K α , $\mu = 23.3$ cm⁻¹, $D_c = 2.09$ g cm⁻³; 2690 reflections measured, 1934 used with $I \ge 2\sigma(I)$ (75% decay in 18 h); $R = 0.126$, $R_w = 0.140$. Data were corrected to allow for crystal decay.

4; $(C_{18}H_{32}N_4O_4S_2)$, $M = 432.6$, orthorhombic, *Pbca*, $a = 22.531(4)$, $b = 21.502(3)$, $c = 8.961(2)$ Å; $U = 4341(1)$ Å³; $Z = 8$, $F(000) = 1856$, Mo-K α , $\mu = 0.276$ mm⁻¹, $D_c = 1.324$ g cm⁻³; 5043 reflections, 2622 with $I \ge 2\sigma(I)$ used; $R = 0.044$, $R_w = 0.039$.

1268 J. CHEM. SOC., CHEM. COMMUN., 1993

Fig. 1 A PLUTON view of the ligand 1 (294 K)

Fig. 2 A view of the ligand **4** (150 K)

Fig. 3 PLUTON view of the silver complex $[1 \cdot Ag_3(NO_3)_3]$ omitting the disordered nitrates and the ring hydrogens for clarity (294 K)

are also bonded to $Ag(1)$ and $Ag(2)$ respectively, $Ag(1)-O(1)$, and Ag(2) are bridged by two oxygens **of** a nitrate group and a second nitrate group is bound to Ag(2) in a bidentate fashion, Ag(2)-O: 2.43(3) and 2.63(3) Å. The third silver cation Ag(3) is bonded to one of the macrocyclic ring sulfur atoms $S(1)$, with Ag(3)–S(1) 2.57(1) Å. In addition it is bound to two more nitrate groups which are disordered about inversion centres. These nitrates bridge symmetry-related Ag(3) cations such that the two $Ag(3) \cdot Ag(3)$ distances are 6.22(1) and 6.34 (1) Å. 2.63(1) Å; Ag(2)-O(2), 2.53(2) Å. The silver cations Ag(1)

In contrast, ligand **4** forms a discrete 1 : 1 complex {FABMS (3-nitrobenzyl alcohol): m/z 641, 639 [M + Ag⁺]}, with the two thiourea groups presumably able to bind in a transspanning manner.

Hydrolysis of 1 $[Hg(OAc)₂-CH₂Cl₂;$ then $K₂CO₃-H₂O]$ yielded the bis(urea) **3,** in 42% yield, and the intermediate monothiourea, **2,** could also be isolated [m.p. 164-165 *"C;* $\delta_C(CDCl_3)$ 180.9 (C=S), 165.4 (C=O)]. Similarly 4 was converted into **6,** although, in this case, *5* could not be isolated. Preliminary cation binding studies using FAB mass spectroscopy8 (glycerol) show that **3** binds Na+ selectively amongst univalent cations (Na+ > K+ > Li+ > Rb+ \approx Cs+ > NH_4^+) and magnesium preferentially (Mg²⁺ > Ba²⁺ > Ca²⁺

Fig. 4 PLUTON view of the silver complex $[1 \cdot Ag_3(NO_3)_3]$ **showing** the linking of the units by Ag(3)

 \gg Zn²⁺ and Cd²⁺; although an L₂Ba²⁺ complex was also observed) amongst divalent ions. The hexadentate ligand **6** exhibited a similar selectivity pattern (Na+ > Li+ $\gg K$ + \approx $Rb^{+} \approx Cs^{+}$; $Mg^{2+} > Ca^{2+} \approx Ba^{2+}$).

We thank SERC for a CASE studentship (M. J. R.) in association with the Parke-Davis Research Unit, the Royal Society (London) for financial support (D. **S. Y** .) and NSERC for continuing support (J. F. G., G. F.).

Received, 12th May 1993; Corn. 3102697C

References

- 1 P. G. Jones, J. J. Guy and G. M. Sheldrick, *Acta Crystallogr., Sect. B,* 1976, 32, 3321.
- 2 M. H. Htay and 0. Meth-Cohn, *Tetrahedron Lett.,* 1976, 79, 469; 0. Meth-Cohn and D. 1. Smith, J. *Chem. SOC., Perkin Trans. I,* 1982, 261.
- 3 D. J. Cram, I. **B.** Dicker, C. N. Knobler and K. N. Trueblood, J. *Am. Chem. SOC.,* 1982,104,6828; *R.* J. M. Nolte and D. J. Cram, J. *Am. Chem. SOC.,* 1984,106, 1416; D. J. Cram, I. B. Dicker, M. Lauer, C. N. Knobler and K. N. Trueblood, J. *Am. Chem. Sac.,* 1984, 106, 7150; J. A. Bryant, **S.** P. Ho, C. N. Knobler and D. J. Cram, *1. Am. Chem.* **SOC.,** 1990, 112, 5837.
- 4 E. Weber, M. Piel, H-J. Buschmann and E. Cleve, *Chem. Ber.,* 1992, 125, 2483.
- *⁵*C. **F.** H. Allen, C. 0. Edens and J. Van Allan, *Org. Synth.,* ¹⁹⁵⁵ *Coll. VOl.* 3, 394.
- *6 S.* G. Davies and A. A. Mortlock, *Tetrahedron Lett.,* 1991, 32, 4791.
- 7 A. **S.** Craig, R. Kataky, R. C. Matthews, D. Parker, G. Ferguson, **A.** Lough, H. Adams, N. Bailey and H. Schneider, *J. Chem.* **Soc.,** *Perkin Trans. 2,* 1990, 1523.
- 8 Allowing the ligand to compete for an equimolar mixture of cations: R. **A.** W. Johnstone and M. E. Rose, *J. Chem. SOC., Chem. Commun.,* 1983,1268; *R.* Kataky, K. E. Matthes, P. E. Nicholson, D. Parker and H. J. Buschmann, J. *Chem. SOC., Perkin Trans. 2,* 1990, 1425.